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ABSTRACT Sign languages are viso-gestual languages, using space and movement to convey meaning.
To be able to transcribe them, SignWriting uses an iconic system of symbols meaningfully arranged in the
page. This two-dimensional system, however, is very different to traditional writing systems, so its automatic
processing poses a novel challenge for computational linguistics. In this article, we present a novel problem
for the state of the art in artificial intelligence: automatic SignWriting recognition. We examine the problem,
model the underlying data domain, and present a first solution in the form of an expert system that exploits
the domain knowledge encoded in the data modelization. This system uses an adaptable pipeline of neural
networks and deterministic processing, overcoming the challenges posed by the novelty and originality of
the problem. Thanks to our data modelization, it improves the accuracy compared to a straight-forward deep
learning approach by 17%. All of our data and code are publicly available, and our approach may be useful
not only for SignWriting processing but also for other similar graphical data.

INDEX TERMS Computer vision, deep learning, expert knowledge, neural networks, sign language,
SignWriting.

I. INTRODUCTION
Sign Languages are a family of viso-gestual languages in
use by the Deaf and Hard-of-hearing communities. Instead
of sound, they rely on hand and body gestures to com-
municate meaning, making use of the rich possibilities of
three-dimensional space and movement to build words and
sentences [1], [2]. They are not, as it was sometimes thought
by the general population, mere codings of oral language
in gestures, but full natural languages with their grammar,
vocabulary and evolution [3], [4], [5]. This recognition as
actual human languages has turned them into an object of
increasing interest in the research community.

The associate editor coordinating the review of this manuscript and
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FIGURE 1. SignWriting transcription for the sign ‘‘History’’ in Spanish Sign
Language, showing the hands near the chin in an initial configuration and
moving down and sideways to a finishing configuration.

Nonetheless, there is not a standard writing system in use
by the signing population. The complex nature of viso-gestual
communication, very different to speech, which is based on
sound, makes creating or adapting a writing system not a
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trivial task. A number of proposals exist, most coming from
the research community [6], [7], [8]. A different proposal,
purported to be more user friendly, is SignWriting, which
utilizes more of the graphical potential of the blank page
to capture signing and its use of space in an expressive and
iconic manner [9].

SignWriting uses abstract but recognizable symbols for the
hands and other parts of the body, and then places them in
2D space to represent their relative locations in 3D signing
space [10]. Arrows and other graphical tricks serve to fully
capture the missing third and fourth dimensions (depth and
time) in a system that is arguably intuitive for both signers
and non-signers, making it not only a valuable recording and
communication tool but also very useful for education.

In Fig. 1 an example SignWriting transcription is shown.
This sign starts with the hands touching the chin, with the
fingers flexed in a ‘‘pin’’ configuration. This configuration,
as well as the hand orientation, are represented by the two
top hand symbols. The location is signified by the circle,
an iconic representation of the head, with a line marking that
the chin is the actual point of contact. That there is contact
at all is represented by the small asterisk to the left of the
head. The hands then move downwards and to the sides,
represented by the arrows, and end up fully extended and in
a different orientation. In this final position, the hands are
filled in black and with the fingers separated from the body
of the hand to represent that the palm is facing downwards.
This is just a small sample of the richness and complexity of
SignWriting, but more can be read in section II or online at
https://www.signwriting.org/.

The use of graphic properties and spatial relationships
makes SignWriting very different from traditional writing
systems.Most writing systems in use for oral languages, if not
all, are based on the sequential concatenation of characters,
with only slight deviations in the co-location of diacritics
and sometimes punctuation. In SignWriting, however, ‘‘char-
acters’’ do not occur in a particular one-dimensional order.
Instead, they appear in a complex bi-dimensional relation-
ship, where their relative position is not arbitrary but actually
represents some spatial meaning. Symbols can be rotated
and reflected, and as seen before, filled in with different
patterns to represent different orientations. If we count every
possible graphical transformation or variation of the charac-
ters in SignWriting, there are beyond thirty thousand unique
symbols to remember, understand, and be able to produce,1

which again makes it very different from the ‘‘usual’’ writing
systems.

These challenges mean that most SignWriting is produced
and consumed in graphical format (i.e. images), making
it difficult to process with existing language technologies
or to combine with oral language resources in equal foot-
ing. Existing approaches avoid this problem by using code
representations of SignWriting, like SignWriting Markup

1Counted in the SignWriting fonts, downloaded from https://www.
signwriting.org/catalog/sw214.html

Language [11], [12] or Formal Signwriting [13], but to be
able to computationally process all the SignWriting data that
exists in image form, techniques from artificial intelligence
and computer vision are required.

We present in this article such a system, capable of under-
standing instances of SignWriting in image form by extract-
ing a meaningful representation from the raw pixel data.
This meaningful representation encodes domain knowledge
of SignWriting, and we have developed an intelligent system
able to automatically extract it. As far as we can ascertain
from the literature, we are the first to process SignWriting
images in this way.

For the processing of the graphic data in the SignWriting
images, inevitably noisy and very variable, we use deep
neural networks, which have very good results in pattern
matching and recognition. First, we present a single state-of-
the-art neural network to solve the full task, as an example
one-shot approach and as baseline for comparison. Improving
on the issues that this first solution presents, our proposed
system further utilizes the domain knowledge encoded in our
data annotation. Neural networks are arranged in a branching
pipeline, with rules coming from domain knowledge used in
between to reduce the complexity of the problem and make it
more tractable. Later steps utilize knowledge extracted from
previous steps to facilitate further processing, significantly
improving accuracy compared to the naive, direct approach.
This divide-and-conquer approach is possible thanks to our
annotation of data into a hierarchical scheme, which lets us
partition the problem into a series of sub-tasks, each easier
than the full task.

One difficulty of our research lies in the sparseness and
complexity of the data. There are many different symbols
to learn to predict, some with different graphical variations,
and some of which can be rotated or mirrored to convey dif-
ferent sign language meanings. These symbols are arranged
in a single SignWriting transcription in a meaningful way,
so it is necessary to find their relative positions at the same
time as the symbol meaning is found. Combined with the
small size of the available dataset, this complexity makes
the search space of our problem too sparse to solve with
direct application of existing neural networks. By reducing
the features to extract at each step, each search space is made
more dense, and entropy of the problem reduced. Not only are
each of the sub-tasks then easier to solve, but the information
extracted can be further processed, informing the next step
and improving its results.

To recapitulate, in this article we present a novel problem
for the artificial intelligence community: automatic recogni-
tion of SignWriting instances. We propose a modelization of
the problem, by giving a computationally tractable descrip-
tion of the underlying data, andwe offer a solution using some
common machine learning algorithms. Due to the originality
and inherent difficulty of the problem, our solution combines
the machine learning algorithms with rules coming from
domain knowledge. We validate our approach by evaluating
its performance in solving the task, and also compare it to the
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performance of a direct, single algorithm, one-shot approach.
These first solutions to the novel problem of SignWriting
recognition validate our computational modelization of the
data domain, and present an opportunity for future research
to improve on the task.

The rest of the paper is structured as follows: in section II,
we present an overview of Sign Language and SignWriting,
to show the complexity of the problem and introduce the
key points necessary to understand our system. Section III is
devoted to other solutions that try to solve similar problems,
and briefly presents useful deep learning approaches. Our
contribution is divided into two sections: section IV discusses
the underlying data engineering, and section V presents our
solution as well as the baseline approach. These are evaluated
and compared in section VI, and finally, section VII gives
our conclusions and outlines future lines of research and
development that can be followed.

II. SIGN LANGUAGE AND SIGNWRITING
Sign languages, as the natural languages of the Deaf and
Hard-of-Hearing communities, utilize not sound, but vision.
Sound, as used in oral speech, is a wave of air pressure
modulated in time to create different qualities to which we
then assign meaning. These sounds are easily quantized into
individual units, the phonemes, so the fundamental model
of speech in linguistics and language technology is as a
sequence of individual phonemes.

This simple model is then easily transferable to writing,
where phonemes are represented by characters. To each indi-
vidual sound, we assign a character (sometimes more), and
then write these characters in order. Instead of phonemes,
some languages assign characters to syllables, morphemes,
or whole words, but in their fundamental, written texts are
strings of characters each representing discrete sounds or
sound sequences.2

In sign languages, it is not clear what the fundamen-
tal unit is, and this is quite an actual issue of linguistic
research.What constitutes phonemes, syllables or even words
in sign language? There is a tension in linguistics between
trying to apply existing categories, developed from oral
language research, and recognizing the uniqueness of sign
language characteristics, but there are many examples of in-
depth descriptions of different sign languages’ grammar and
phonology in the literature [14], [15], [16], [17].

Some systems developed to write sign languages, such as
that devised by [8], or the Hamburg Notation System [6],
are in their origin linguistic notation systems, but SignWrit-
ing [9] is a naturalistic system based on iconicity rather
than linguistic categories. As such, the fundamental ‘‘unit’’
in SignWriting is the hand, since it is the most prominent
articulator in the phonology. We will call the symbols used
in SignWriting ‘‘graphemes’’ from now on, to highlight their

2‘‘Ideographic’’ writing systems, such as the Han characters in use in Chi-
nese and Japanese, seem different on the surface, but in reality each character
is assigned a set of possible sounds, so the sequential, one dimensional model
still applies.

FIGURE 2. Some hand graphemes, comprising different hand shapes and
orientations. Based on [19].

nature as units of a writing system, but different from the
linear ‘‘characters’’ of oral writing systems.Wewill introduce
the different SignWriting graphemes in the following, to give
a sense of the problem we are trying to solve, and use them
to introduce the relevant parts of sign language phonology
which give rise to the complexity of its writing systems.

Since hands are the most prominent and main articulator
of sign languages, so hand graphemes are the most visi-
ble graphemes in SignWriting. They are iconic depictions
of hands, using polygons to represent their configuration,
namely the shape the palm and fingers make. The fingers
can flex against the palm, extend, join laterally, curl, or even
cross. The possibilities are somewhat different in each sign
language, but see [18] for an analytical account and cod-
ing system for those in American Sign Language. Hand
graphemes can be used to represent right or left hands, which
are mirror images of each other, so the shape is horizontally
flipped (reflected) to represent themwhen the hand grapheme
is not symmetric.

As objects in three dimensional space, hands have a loca-
tion and rotation which, when relevant, need to be specified.

First, orientation captures the rotation of the hand in three
dimensional space. The same sign, with hand rotated in dif-
ferent angles, can mean different things, so orientation is an
essential parameter to notate. However, it is an intrinsically
three-dimensional feature (see our somewhat mathematical
account in [19]), so a number of graphical techniques are
required to depict it in the flat surface that SignWriting uses,
enumerated in the following and depicted in Fig. 2.

1. To project the 3D hand into a 2D plane, a plane of obser-
vation has to be determined. This can be the vertical
plane (parallel to a wall in front) or the horizontal plane
(parallel to the floor).

2. If the chosen projective plane is the floor plane, the
fingers are drawn separate to the hand, like in the last
example of Fig. 2.

3. The hand grapheme can then be rotated, to iconically
represent the rotation as observed from the chosen point
of view.
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FIGURE 3. Examples of non-rotating graphemes. On the left, some body
parts (on the head) are shown. Clockwise from top left: generic face,
eyes, nose and ears. On the right, diacritics marking different types of
contact are show. Clockwise from top left: touch, rub, brush and strike.

4. To indicate wrist rotation, the palm of the grapheme
is filled in with different patterns according to how it
would be seen from the chosen plane. If the palm is
facing toward the signer, the grapheme is white, while
if the back is seen, it is filled with black. If the hand is
partially rotated, it is filled half white half black, with
the white side indicating where the palm is.

5. To improve iconicity, when the different fills are used,
the positioning of the fingers in the grapheme can
change, to more iconically capture the observed shape
of the hand. This can mean that there is sometimes
ambiguity between left and right hands, when their
wrists are rotated such as the filling ends being the
same.

Next, the hand has to be located in space, since a sign
performed at the height of the head is not the same as the same
movements performed at the chest, for example. In SignWrit-
ing, a number of graphemes exist to denote different parts of
the body. These graphemes can then be placed in the page, and
hand graphemes located relative to them to iconically repre-
sent their three-dimensional location. If the sign is realized in
the ‘‘neutral’’ space (in front of the body, but not relative to
any particular body part) no body graphemes need to be used,
or if the head is required,3 the hands are placed sufficiently
distant to it to not give rise to confusion. Of course, the
exact placement of hand and body graphemes is a subjective
and stylistic decision, which may not often be a problem for
humans but can be an obstacle for computational processing.

Related to location, an important feature in sign language
is contact. Hands can touch, rub, brush and strike each other
or different parts of the body. This is represented using small
graphemes, which we call diacritics, placed in suggestive
positions near the point of contact. These are the main dia-
critics, but we also group under this umbrella other small,
independent graphemes which capture things like movement
dynamics, pauses, or internal hand movements. Internal hand
movements capture an evolution of the hand shape in the
sign, such as fingers being bent, extended, or wiggling. Some
examples of heads and diacritics can be seen in Fig. 3.

Lastly, hands are often not static, but rather move in
space, and these movements can have meaning in themselves.
In SignWriting, movements are represented with arrows,

3The head may be required to show the eyes or mouth, which can alter a
sign’s meaning, for example with a frown or a smile.

FIGURE 4. A selection of movement markers in SignWriting. Each of these
is a different character in SignWriting fonts, but we can think of it as
composed of smaller units: straight or curved segments, single or double
stems, and black, white or empty arrow heads.

which can have a start and an end, and depict a straight,
curved, or more complicated trajectory between those points.
Movements can also be circular, naturally represented with
a closed circular trajectory. To represent three dimensional
movements in the flat page, the same observation planes used
for hand orientation are required.When the movement occurs
in the plane parallel to the floor, single-stemmed arrows are
used, while double-stemmed arrows represent movements in
the vertical plane. Additionally, the arrow heads can be black,
if the right hand is moving, filled with white, if it is the left
hand moving, or left open, when both hands move together
as a unit. Movements can get very complicated, and some
examples are presented in Fig. 4.

These are not all of the possibilities of SignWriting, and
even within the described graphemes there is complexity
that is out of scope for this article. This introduction should
be enough to understand the complexity of the problem in
hand, and the reasons for our proposed solution. Nonetheless,
a complete textbook by the inventor can be found in [20],
or online at https://www.signwriting.org/.

III. COMPUTATIONAL APPROACHES
From a language technology point of view, one might think
of our problem as a task of Optical Character Recognition
(OCR). OCR is the task of recognizing the written form of
language found in images, often scanned, and either coming
from a printer, other type of digital production or handwritten.
Indeed, that is exactly our problem, recognizing text from ras-
terized imageswhere the language information is lost but only
pixels remain. However, existing OCR solutions do not work
for our problem. Reference [21] gives a fascinating account of
the history and architecture of Tesseract, an open source OCR
engine, but the reader will note that most of the issues, tricks
and clever solutions are based on an understanding coming
from oral language.

Like Tesseract, existingOCR systems are developed for the
writing systems of oral languages, and thus often rely on two
assumptions that don’t hold for SignWriting, both of them
related to the spatial uniqueness of SignWriting–which is in
turn an effect of the spatial use of the viso-gestual modality
of sign languages.

First, graphemes are assumed to form one-dimensional
sequences. Text flows in a main axis, sometimes wrapping
along a second axis (e.g, in western languages, characters
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flow from left to right and then lines can wrap from top to
bottom). Even with the more advanced OCR systems that
can detect text in different, random positions in the image,
when characters form a word they are expected to form a
line. In SignWriting, graphemes are distributed spatially in
a significant but non-linear way.

Related, graphemes in oral language writing systems are
expected to be mostly upright. Even some typographical
variations like cursive don’t rotate the character more than
a few degrees, and in any case this rotation is not signifi-
cant but rather stylistic variation or noise. In SignWriting,
hand graphemes and movement markers rotate and reflect
to represent different spatial meanings. While this could be
solved by treating each of the possible transformations as a
different grapheme, this multiplies the number of graphemes
to recognize in more than an order of magnitude. This makes
it unpractical both for the manual processing and tagging
required to get the expert system running, and rarefies the
data, making it sparser and therefore the use of deep learning
less robust.

A similar problem to ours is faced by [22], who need to
recognize a different kind of language: handwritten logical
circuit diagrams. In those diagrams, the 2D position of circuit
elements is meaningful, and so, as for us, OCR algorithms are
not applicable. However, they have a much smaller vocabu-
lary than ours. SignWriting graphemes number in the hun-
dreds, while logic circuit elements in their dataset seem to be
less than ten. Additionally, they only deal with their elements
in a standard orientation, the circuit flowing from left to right,
so they do not have the problem of rotations and reflections
of the graphemes.

Indeed, with the recent advances in artificial intelligence
and deep learning, more such graphical writing representa-
tions may become apparent.4 Since ready-made OCR sys-
tems cannot be used, nor OCR technologies be adapted to
the problem, it is necessary to directly use the underlying
technology: computer vision.

A. COMPUTER VISION
Computationally understanding images is a hard problem due
to a number of factors. Of course, what humans see and
interpret in an image is a rich and subjective composition of
different meanings, but we often just need a simpler under-
standing, such as labeling the object depicted (classification),
finding different objects in a scene (object detection, scene
understanding) or separating image regions according to the
real life object to which they pertain (image segmentation).

The main issue is that the way images are usually stored
and manipulated is completely unrelated to the way humans
understand them. Instead, they are optimized for display on
square arrays of color elements (monitors and screens) and
are therefore stored as arrays of pixel values. If an image is
stored in row-order, neighbour pixels in the vertical direc-
tion will be far apart in memory. If an image stores the

4We discuss some more of this in [23].

different color information (channels) separately, even the
values needed to reconstruct a pixel will be far apart in the
computational representation.

This pixel array-based representation thus presents a prob-
lem for algorithms that try to extract meaning from images,
since it is unfeasible to write deterministic and exhaustive
rules that relate when pixels form lines, shapes, or more
complex objects.

To deal with this, techniques which compute aggregated
features from the pixel information have been used to great
success. Some of these act globally, computing mathematical
properties of full images, while kernel methods use convolu-
tions to compute local properties of images, by integrating
with a kernel function suited to the particular task which
takes into account the values of nearby pixels. Many different
mathematical algorithms and statistical techniques have been
developed, and a comprehensive overview of the state of the
art before the uprise of deep learning can be read in [24].

But in recent years, there has been an exceptional expan-
sion of machine learning techniques, especially around the
use of deep learning, which has notably improved the state of
the art both in accuracy and range of problems which can be
tackled. While neural networks haven’t necessarily replaced
traditional methods (see [25] for a discussion on this), they
have become very popular, not only for their success rate but
also because of their relative ease of use.

A rough description of machine learning techniques is to
use training data, a large number of input examples where we
know the desired output result, to decide the parameters in
a regressive (predictive) algorithm by minimizing the error
made. For example, in the most common neural networks,
an iterative process of prediction and error computation (for-
ward and backward propagation) is performed and the algo-
rithm parameters are iteratively improved.

The strong suit of neural networks is their ability to extract
and remember patterns in source data, without the need for the
researcher to accurately formalize or describe these patterns.
Deep neural architectures can build these patterns from other
patterns, in a cascade of increasing complexity, which makes
them particularly suited to computer vision. One can imagine
pixel arrays turning into lines and shapes, lines and shapes
into body parts, and these body parts being then combined to
discover that an image is that of a dog.

B. NEURAL ARCHITECTURES
As we said at the start of the section, there are different tasks
in computer vision, and neural networks are not only applied
to computer vision, but rather a wide variety of problems. All
these networks are not the same, but each problem requires a
specific architecture (combination of layers, activation func-
tions, and other parameters) suited to learning the particular
patterns that solve it.

For image classification, that is, finding a suitable label
to describe the content of an image, a usual neural archi-
tecture used is that of convolutional networks, for example
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AlexNet [26]. This architecture is composed of convolutional
layers, which combine local features of an image into aggre-
gated characteristics. These patterns are built upon, layer after
layer, and in the end, sufficiently sophisticated graphical char-
acteristics are found, so a probability of the original image
belonging to a particular class can be given. As in all neural
networks, the patterns and convolutions found by the network
are not pre-determined, but rather optimized in a training step
using already annotated images.

‘‘You Only Look Once’’ networks (YOLO) are a type of
neural network used for object detection and classification.
Given an input image, the different objects contained are
found, and a label assigned to each of them. This architecture
can be trained for different corpora, and is described in [27].
Roughly, YOLO networks learn, for the different regions in
the image, the probabilities that a particular object or its
boundary can be found there, and then reconstruct the objects’
positions and sizes from this information.

IV. DATA DESIGN
In the previous section we have seen machine learning
approaches to the task of computer vision. But the qual-
ity of any machine learning approach rests on a sometimes
overlooked cornerstone: data. Training data must be sourced,
prepared, preprocessed, and often annotated. This is a costly
process in terms of time and effort, but on its correctness
lies the maximum real performance of the trained algorithms
in the real world. As [28] say, an error in any step of the
data pipeline propagates to further steps, compromising the
accuracy and reliability of the algorithm.When approaching a
novel problem, often new data must be sourced. Furthermore,
the problemmust bemodeled, and the data annotation schema
designed. Neural networks learn patterns very accurately, but
we have to decide what patterns to learn, what features to
discriminate and which to abstract.

This process of data engineering is a fundamental step of
the expert resolution of a problem, a step where much of
the domain knowledge to be used is embedded in the final
system, and thus it is as much part of the solution as the
system’s code and implementation.

Unfortunately, there is not a lot of SignWriting data avail-
able to us, and what can be found is not in an easily process-
able format. Sometimes there is an association of transcrip-
tion to meaning in oral language (which doesn’t really help,
since the oral word is almost never related to the sign param-
eters) and most of the time there is no indication whatsoever
of the symbols contained in the SignWriting transcription.

This has meant that we have had to prepare our own corpus
of SignWriting that can be used for machine learning or
linguistic research, using data collected in a collaboration
with linguists as part of a project to develop tools for the ease
of SignWriting visualization: https://www.ucm.es/visse.

In the corpus, there are two types of data: logograms
and graphemes. Logograms are full transcriptions, images of
SignWriting which correspond to a sign. Graphemes is the
name we have chosen for individual graphic components,

FIGURE 5. Annotation for a hand grapheme, showing the different labels
and values that need to be assigned. To its right, an illustration of the
depicted hand shape is shown.

units of linguistic information which by themselves convey
some of the meaning necessary to reconstruct the sign. The
full information is obtained by combining themeanings of the
different graphemes while taking into account their relative
position and rotation within the logogram.

The information represented by each grapheme, however,
is itself complex, and tagging each of them with a single label
is not enough. We want to be able to discern the different
features described in section II, and so we have developed an
annotation schema for our corpus, where we assign a variable
number of labels to each grapheme, depending on how much
information is needed.

A first label, ‘‘CLASS’’, divides graphemes into 6 classes
of symbols, with related graphical properties and sim-
ilar semantic information: ‘‘HEAD’’ for head symbols,
‘‘DIAC’’ for small diacritics, often used for contact infor-
mation; ‘‘HAND’’ for graphemes which represent hands, and
‘‘ARRO’’, ‘‘STEM’’ and ‘‘ARC’’ for arrows.

Graphemes are then annotated with an additional tag,
‘‘SHAPE’’, which identifies the actual SignWriting symbol.
For HEAD and DIAC graphemes, this is enough informa-
tion, but other graphemes require more annotation. HAND
graphemes, such as the one tagged in Fig. 5, have an addi-
tional label, ‘‘VAR’’, which represents the wrist rotation
(whether the hand is white, black, or half and half, see
section II about orientation). With this, the ‘‘lexical’’ infor-
mation of a hand grapheme is fully specified, but we still need
to record the rest of its orientation, as graphically represented
by the symbol rotation and mirroring. Rotation (ROT) can
take one of 8 different values, described with the cardinal
points (N for north, NE for northeast, etc.). If the symbol is
mirrored (horizontally flipped) a value of ‘y’ is added for the
reflection (REF).

The remaining classes of graphemes, ARRO, STEM and
ARC, are those needed to represent movements. As we saw
in Fig. 4, movement markers in SignWriting can be very
complex, as well as mixed and superposed to create composi-
tional meaning. Nonetheless, they can be seen as composed of
different segments: the straight or curved trajectories, or the
end of movement arrow heads. Even if, from the point of
view of SignWriting, movement markers are single holistic
‘‘symbols’’, each of the segments has its own visual identity
and meaning, so in our corpus we have chosen to identify
them as separate graphemes.

Arrow heads (class ARRO) can be black, white, or not
filled, to represent which hand is moving. The body of the
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FIGURE 6. Annotation of the logogram for the sign ‘‘History’’.

arrow can then be straight (STEM) or curved (ARC). STEMs
and ARCs can be either single or double, to represent whether
the movement is parallel to the floor or to the wall, and finally
ARCs can be a full circle, half of one, or a quarter. This is
all encoded into the SHAPE, and it is our hypothesis that
with this graphemes most if not all movement markers can
be recorded. Finally, graphemes of ARRO, STEM and ARC
class can rotate, so need an additional ROT tag.

We have collected and annotated 982 handwritten
logograms, within which 6071 graphemes can be found. The
logogram annotation consists of the bounding boxes (location
and size) of the graphemes, and then tags for each grapheme
with the appropriate combination of features. An example
annotation can be seen in Fig. 6. The dataset we have created
is publicly available at https://zenodo.org/record/6337885,
including an annotation guide with detailed information
about the different grapheme classes and their tags.

V. PROPOSED SOLUTION
In the previous section, we have described the data that we
have available, and an annotation schema with which to orga-
nize and store the information contained within each image
in our dataset. This schema is a modelization of the problem
we want to solve: extracting a computational representation
of the semantics represented by SignWriting images. As we
saw in section III, we can train machine learning algorithms
to learn the underlying patterns in annotated data, so that they
are able to reproduce them in other, previously unseen, data
samples. Therefore, we can use these algorithms, in particular
neural networks, to learn and reproduce the modelization of
our problem implicit in our corpus annotations, and solve our
problem this way.

As a first approach and baseline for comparison, we use
a state-of-the-art computer vision algorithm: YOLO. This
is a deep learning detector and classifier neural network
architecture, which can solve the full task with one single
network, but has many limitations. Our proposed solution is
a second approach which addresses some limitations of the
first, combining additional networks into a branching pipeline
which intelligently decides the paths to follow. This allows
us to exploit the expert knowledge encoded into the corpus
annotations, and solve a data problem in which a Big Data
approach is not enough.

A. ONE-SHOT APPROACH
YOLO networks, as introduced in section III-B, seem like a
perfect fit for our problem. They solve detection and clas-
sification in one step, so given a logogram, they should be
able to locate the different graphemes depicted and assign a
label to each of them. A problemmight be that our graphemes
are tagged with many different features, but we can create a
different label for each feature combination (concatenating
tag values) and give this resulting label to the network to
learn. From this single label, the different features can then
be extracted, and so the full task of SignWriting resolved.
We use YOLO version 3, from Redmon and Farhadi [29],
as implemented in https://github.com/AlexeyAB/darknet.

We will examine the results later, in section VI, but this
one-shot solutionwill prove to be not enough for our problem.
Essentially, there is too much complexity in our data for the
single neural network to solve it successfully.

B. EXPERT KNOWLEDGE-BASED PIPELINE APPROACH
To make the detection problem more approachable, we have
to reduce the information that is passed to the neural network.
Instead of telling it that each possible different grapheme is
an object to locate, we can omit some of this information,
and just have the network learn to find a few rough groups
of graphemes (the CLASS tag from section IV). This way,
the detector network learns to find objects abstracting away
some of their details, which makes it more able to generalize,
and thus increasing its ability to find graphemes which are
not seen exactly so in the training data.

Then, we can use a different procedure to complete the
missing features. Since detection has already been performed,
we can extract the region of the image where the detected
grapheme is found, and utilize only this sub-image. This lets
us ignore all information unrelated to the particular grapheme
in question, and what we have left is a new task of, given
an image depicting just a grapheme, find out the features
it represents. Moreover, since we already have the rough
grouping given by the detection step (the CLASS tag), we can
use different processes for each of the grapheme classes.

For most of them, it is enough to use a single neural net-
work to learn all of the remaining features. We use AlexNet,
as introduced in section III-B, and treat this problem as one of
image classification. For each grapheme, a label is computed
by concatenating its features, just like was done for the one-
shot YOLO. The difference is that now we train different
networks for each of the grapheme classes, reducing the num-
ber of labels they have to learn, and letting them concentrate
in the specifics of each different grapheme instead of the
commonalities to the whole group.

The case of hand graphemes is a little different. As we saw
in section IV, hand graphemes have each four distinct features
in addition to the CLASS, that is the SHAPE (finger config-
uration), the VAR (palm orientation) as well as the graphical
transformation (ROTation and REFlection). There are more
than 50 hand shapes in our corpus, which multiplied by a
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FIGURE 7. Full pipeline architecture, including the different networks, decisions and processes. An example logogram and some of the
detected graphemes are shown as they progress through the pipeline.

possible 6 different variations, 8 rotations and 2 reflections
(normal and mirrored) give a total of more than 4000 possible
combinations. This is too difficult for the network to learn,
more so given the scarcity of our data, so we further subdivide
the problem.

First, a classifier (again AlexNet) is used to detect the
transformation of the grapheme (rotation and reflection).
Once the transformation is detected, the grapheme is nor-
malized to a standard form (North rotation, no mirroring).
A second AlexNet classifies this normalized form, finding its
SHAPE, and a third and last network finds theVAR. This way,
we encode our knowledge of SignWriting into deterministic
rules and steps of processing. The neural networks are still
in charge of detecting the visual patterns that constitute the
graphemes, a task better suited to deep learning, but recon-
structing the grapheme tags from the different visual patterns
is done in the glue between the networks. This means each
network only has a smaller task to learn, which it can tackle
even with the limited data available. The normalization of
rotation and reflection is again a deterministic rule, which
transforms the data in ways that we knowmake sense, freeing
the networks from having to do the work of generalizing such
transformations.

The full pipeline for SignWriting can be seen in Fig. 7, with
an example logogram for reference.

VI. EVALUATION
There are many different metrics which can be used in
machine learning and computer vision, including precision,
recall, mean average precision, etc. These metrics are each
useful for different things, and for a complete understanding
of an algorithm it is often necessary to measure all of them,
and obtain a rounded view of the problem. Indeed, we have

used them while building our system. However, we are not
so much interested in the performance of the networks them-
selves, since there is extensive research on this, but rather in
the performance of our system for our full problem, that is,
transformation of SignWriting images into useful computa-
tional representations.

To measure this, we use accuracy, which is a balanced
scoring metric and has the added benefit that it can be
directly compared between our solution and the baseline
direct approach. Accuracy is a measure of how good predic-
tions by an inference system are, by dividing correct predic-
tions by the total number of instances. We adapt the concept
(proportion of correct over total) to three different measures
which are useful to us. The key aspect to evaluate is the pre-
dicted graphemes: how many of them can be found, and how
accurate their predicted features are. The third measurement
combines the first two into an overall performance of the full
task.

First, we need to measure detection accuracy, that is,
whether predicted graphemes are actually there, and whether
the graphemes which are there are found at all (equation 1).
A grapheme is considered correctly predicted if the area of
the bounding box sufficiently overlaps the true bounding box.
If there is no true grapheme where a predicted grapheme
is found, it is not counted as a correct detection, and if no
grapheme is predicted where the true annotation has one, it is
counted as a missed detection.

Detection Accuracy =
correct detections

total detections + missed dets.
(1)

Then we need to measure whether the labels assigned
to each grapheme are correct, that is, classification accu-
racy. This is only measured for graphemes which are cor-
rectly detected, and it is the proportion of the correctly
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TABLE 1. Performance of our solution and a baseline one-shot algorithm
for the task of SignWriting recognition: grapheme detection and
classification within logograms.

classified graphemes over the total number of correct detec-
tions (equation 2).

Classification Accuracy =
correctly classified
correct detections

(2)

Finally, a combined measure is computed, overall accuracy
(equation 3), which scores each solution for the global task of
recognizing SignWriting. It counts the graphemes correctly
detected and classified, dividing it among the total number of
predictions and missed predictions.

Overall Accuracy =
correctly classified

total detections + missed dets.
(3)

Accuracy measures are proportions, so the three given
scores range from 0 (worse) to 1 (perfect) values.

To evaluate the performance of the algorithms closer to
how they would be used in the real world, and as is standard
practice, we split our logogram data into two sets: a training
set, used to automatically learn the patterns, and a testing set
which is not used in training. This set is never seen by the
algorithm, and thus simulates real world, previously unseen,
data. The different accuracy measurements are evaluated on
this test set. There are 791 logograms in the training set,
and 191 in the test set, resulting in a total of 4840 graphemes
in the training set and 1231 in the test one.

The results of computing these metrics for our solution and
the baseline single YOLO network are shown in Table 1. The
overall accuracy of the direct approach is of 0.58, which may
seem low but is impressive for the complexity of the problem.
Our pipeline manages to increase performance by 17%, to an
overall accuracy of 0.68. This improvement alone shows the
validity of our approach, and a human analysis of the pipeline
results gives an evenmore optimistic view. Often, the pipeline
makes mistakes that are less severe than a complete failure.
For example, similar hand shapes are often confused, or dia-
critics mixed up. While these are indeed wrong predictions,
and are counted as such in the accuracy computations, the
partial truth that they are able to predict can still be useful
for downstream applications to process, and this is the great
advantage of the pipeline.

Our full experimental setup can be reproduced using our
published dataset (https://zenodo.org/record/6337885) [30],
which includes the Data Version Control (DVC [31]) con-
figuration files that define the experiments, and scripts
for performing every step. These scripts use our software
Quevedo [23], a tool for annotating and processing graphical
language datasets. To examine the repository, for example one
could use the following commands:

$ wget https://zenodo.org/record/6337885/
files/visse-corpus-2.0.0.tgz?download=1

$ tar xzf visse-corpus-2.0.0.tgz
$ cd visse-corpus
$ pip install quevedo[web]
$ quevedo web

To reproduce the machine learning evaluation, one also
needs to haveDVC andDarknet installed. Then, it is as simple
as issuing the DVC ‘‘reproduce’’ command:

$ dvc repro

This includes all information needed to reproduce our
experiments, since all the steps and data of our experimental
setup are contained in the different configuration files and
software. However, since Quevedo is generic, not only can
our SignWriting experimentation be reproduced, but also its
ideas applied to other datasets and domains.

A. ERROR ANALYSIS
In a more in-depth analysis, the first immediate observation
is that the single YOLO detection performance is too low
to be useful. While its classification score is good, this is
an effect of only classifying a handful of graphemes, the
ones that have been detected. Detection, however, misses too
many graphemes, essentially ignoring those which are not
common enough. While focusing on the most common data
is not a bad strategy in many situations, in this case detection
performance is too low to justify it. Furthermore, for our
purposes, incomplete predictions can be useful, since a lot
of the meaning in the transcription can be later reconstructed,
which can not be done for a missed detection.

As was advanced before, the probable reason for this lower
detection accuracy is that, by giving all the features to the
YOLO algorithm, it can not see the common properties of the
different grapheme classes. We tell it that a touch diacritic is a
different thing than a rub diacritic, so it needs to differentiate
them and can not exploit their graphical similarities. This
impedes proper generalization, and thus the network only
learns to detect and classify graphemes which it has seen
enough, ignoring the rest.

In our pipeline solution, only the CLASS feature is given
to the detector network to predict. The different grapheme
classes have been chosen due to their graphical properties,
so the network can exploit this to learn to discriminate them
while at the same time being able to generalize to instances
not seen before. In fact, the YOLO network is better at
this rough classification than a grapheme classifier network
trained specifically for this task. It is likely that in this
case, having the full logogram context can help, rather than
hinder, prediction. Diacritics are smaller than hands, which
are smaller than head graphemes. Arrow components (heads,
stems and arcs) are usually found together. This context is lost
when isolating the grapheme, but present in the full logogram,
so the detector can use it to give us a first rough classification
which we then apply to split further processing into branches.

Regarding topographic accuracy of detection, that is, how
close the predicted bounding boxes are to the annotated ones,
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TABLE 2. Detection, classification and overall accuracy of our pipeline
solution and the baseline one-shot algorithm, computed for each
grapheme CLASS.

it is generally good across different configurations that we
have tried. Detecting and separating black-on-white objects
is generally easy for the network, with two very relevant
exceptions. The first problem are diagonal elongated objects,
that is, arrow stems. These graphemes are sometimes very
long, and when rotated, they may actually occupy very little
of their bounding box—the bounding box is square, but the
stems only fill the diagonal. This can be a problem when
other objects are present in the bounding box, even if not
overlapping the actual arrow.

The second problem is, precisely, overlaps. While YOLO
networks seem to do a good job with partially obstructed
objects, sometimes graphemes are placed in a ‘‘cross’’ con-
figuration, where they overlap diagonally, and the ends of the
lower grapheme spread to both sides of the overlapping one.
To further complicate this issue, graphemes so placed often
have the same CLASS. Hands can be placed on top of each
other, movements can have cross-like trajectories, etc. It is
likely that YOLO networks have trouble with these combi-
nations due to the way the edge and interior probabilities are
merged by the network to find the predicted bounding boxes.

Fortunately, while not uncommon, these two detection
problems are the only issues in this step, and do not hinder
further classification of graphemes.

By splitting the accuracy measurement for each grapheme
class as in Table 2, more detail can be seen. It is clear that
two grapheme classes are especially problematic: HAND and
ARC. Their classification is a tough problem, which can be
seen in the low detection of the single shot YOLO network
(remember that it performs detection and classification at
the same step, so difficult to remember graphemes will not
be detected at all) and in the classification accuracy of the
pipeline.

ARC graphemes, which represent curved movement tra-
jectories, are numerous and very varied, while at the same
time being the class with lowest number of instances found
in the corpus. It is also the case that hand-drawn arcs tend to
present the highest graphical variability, since many different
angles and sizes can be used by the transcriber to represent
the samemeaning. Both issues lead us to think that increasing
the number of ARC instances in the training data is the most
important step to be taken, but more detailed processing like
the one done for HANDs may also help.

HAND graphemes are also very difficult, probablymore so
than ARCs, due to the multitude of features to be predicted
and how they interact. However, hands are probably the most
prominent articulator of sign languages, and as such appear in
good numbers in the corpus. This can be seen in the huge leap
in detection accuracy, from 0.48 by the single YOLO network
to 0.88 by the pipeline, and the overall accuracy improvement
from 0.35 to 0.54.

In both cases, classification accuracy affects overall perfor-
mance, but detection accuracy ismuch better with the pipeline
than in the YOLO single shot solution. As said before, being
able to detect that a grapheme is present is fundamental for
correct computational representation of SignWriting. It is of
utmost importance to detect hands, which the single YOLO
often fails to do, and in the case of ARCs knowing that a sign
has some curved or circular movement, even if the concrete
details are not known, is already very useful information.

B. LIMITATIONS OF THE SYSTEM
There are a number of limitations to our work, the most
important of which is related to the data used for training
the deep learning algorithms. The corpus we have collected
is very representative of the different graphemes available
for composing SignWriting, but there are other dimensions
alongwhich there is not somuch variation. For example, most
of our transcriptions come from a single informant, so there
can be stylistic choices made by that informant and peculiar
to their use of SignWriting. Additionally, our logograms
represent signs from Spanish Sign Language, so graphemes
that codify features not common in Spanish Sign Language
may not be properly represented. To overcome this limitation,
more data need to be available, and we will work in the future
to acquire them.

Thinking about the graphical context of the logograms,
all of our samples are in black font on white background,
and have been preprocessed to maximize contrast. This can
be solved with more data, from more contexts (e.g. ruled or
squared paper, using colored ink, from a camera photo with
bad lightning) or by adding a preprocessing step to our system
which corrects for this kind of variations.

As to the machine learning algorithms employed, it is
likely that there are better algorithms available. The state of
the art in deep learning is rapidly improving, and it seems
every other year there is a major breakthrough. This algo-
rithms could be swapped in, replacing the neural networks
we use and improving accuracy. However, since the dif-
ficulty of our problem lies in the complexity of the data
and the small amount available, our system can continue
to work as is, augmenting the machine learning techniques
with the expert knowledge and therefore improving overall
performance.

C. PRACTICAL APPLICATION
The system described in this article, including the feature-
ful description of SignWriting instances and the automatic
pipeline capable of extracting it, underlies the ‘‘Visualizing
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SignWriting’’ application (https://github.com/agarsev/
visse-app). This application was one of the results of
project ‘‘Visualizando la SignoEscritura’’ (VisSE, ‘‘Visualiz-
ing SignWriting’’ in Spanish) which seeked to create tools for
the better use of SignWriting in the digital world. The user-
facing result is a web application able to recognize instances
of SignWriting, be them scanned from the user device or
created from an image processing software, and explain them
to the user via textual descriptions of the graphemes and 3D
models of the hands. This application validates our approach
by showing, on the one hand, the use of image recognition to
process SignWriting, and on the other hand, the usefulness
of our annotation schema which can be leveraged to generate
explanations for the components of a newly seen logogram.

VII. CONCLUSION AND FUTURE WORK
As the importance of sign languages is recognized throughout
the world, the inclusion of the signing community in the
digital economy is fundamental. To this end, computational
representations of sign languages are necessary, both for end
users and researchers alike. In the case of SignWriting, much
of the available data exist in image formats, understand-
able by humans but not machines. Converting SignWriting
images into a computational representation is a necessary
first step to automatically process them, but requires state-
of-the-art applications of artificial intelligence, since images
are not easy to process using hand-crafted rules or ad-hoc
procedures.

We have presented a careful analysis of the data underlying
the problem, establishing a categorization of the different
meanings of SignWriting symbols into hierarchical features.
This formalization is itself one of our contributions, a com-
putationally valid representation which captures the intended
meaning of SignWriting transcriptions into a numerical rep-
resentation of the positions of graphemes within a logogram
and additional key-value pairs of features for each of them.

To automatically reproduce this representation for new
instances of SignWriting, the best approach is to use deep
learning, able to capture complex relationships in the data and
generalize from the patterns present in a training corpus to the
general case. However, large amounts of data are necessary
to make deep learning approaches work reliably. For our
problem, there does not exist a reference corpus of data,
or a similar problem from which to transfer learned neural
network weights.

We have collected the necessary samples, and created a
corpus [30] with which to train the algorithms. Still, the
amount of data available is small, and costly to annotate.
However, we have shown that the annotation pays off if
done carefully. Our use of many features, decided both from
a semantic point of view and the necessities of the visual
processing required for the problem, has allowed us to build
an expert solution able to automatically recognize SignWrit-
ing. Compared to the simple, direct approach using a single
YOLO network, our proposed improved system uses many
deep learning networks, combined in an intelligent pipeline

which can extract additional information and make decisions
based on previous steps of processing, achieving a 17%
improvement in recognition accuracy and additionally being
able to extract partial information even when recognition
fails.

On the whole, domain knowledge about the problem has let
us create a system which utilizes deep learning approaches
even in a situation where no existing data can be found,
by collecting the corpus ourselves, defining a formal schema
for its annotation, and exploiting it to get the best performance
from the neural networks employed. Our ideas and approach
may be useful not only to process SignWriting instances, but
may be applicable to other problems where the data available
are less numerous than the expert knowledge that can be
collected.

A. FUTURE WORK
There are three straight-forward directions in which this
research can be improved. On one hand, collecting more
and more varied data will likely improve performance of the
system, and solve some of the limitations outlined above.
A second direction to go is downstream, putting the recog-
nized SignWriting representation to use in more consumer
applications. The needs of these applications will tell us what
the strong points of our approach are, and where its need to
improve to support their use case. Finally, the components
themselves used in the system may be improved. We have
used readily available neural network architectures, as can
be found in the literature, and with implementations that
we can directly use. Fine-tuning the network parameters,
or swapping some of them for networks better suited to each
particular sub-task, will surely improve overall performance.

There is also room for alternative approaches to be tried.
An ensemble of neural networks, where their results are
weighed and combined, can help improve detection and clas-
sification of rarer graphemes, or correct frequent errors for
certain common or uncommon situations. A custom neural
architecture that embeds all the steps in our pipeline may
be possible, which would facilitate feedback between steps,
or some other technique for improving the results of earlier
steps in the pipeline by taking into account the confidence of
later steps.
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